Opportunities for Research Post-doctoral and graduate positions now available

- Systems biology models for wall biosynthesis pathways
- Cell biology of the wall
- Hemicellulose and pectin biosynthesis
- New enzymes involved in polysaccharide biosynthesis
- Polysaccharide-modifying enzymes
- Wall structure and its relationship to recalcitrance
- High-resolution NMR spectroscopic analyses of cell walls
- Lignin-carbohydrate complexes

For further information contact

Alan Darvill (adarvill@ccrc.uga.edu)

Debra Mohnen (dmohnen@ccrc.uga.edu)

CCRC The University of Georgia 315 Riverbend Road Athens GA 30602 USA

> www.ccrc.uga.edu Tel: 706-542-4401 Fax: 706-542-4412

The BioEnergy Science Center (BESC)

is a US Department of Energy funded center with the unifying theme of enabling researchers to understand and overcome the recalcitrance of lignocellulosic biomass for conversion to fermentable sugars

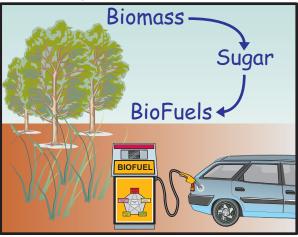
DOE Bioenergy **Research Centers** http://genomics.energy.gov

BESCs core team of top-tier universities, leading national laboratories and private companies are working together to make revolutionary advances in biological energy production from plant biomass.

BESC (www.bioenergycenter.org) is:

Oak Ridge National Laboratory with

Georgia Institute of Technology National Renewable Energy Laboratory University of Georgia University of Tennessee


In partnership with ArborGen LLC **Dartmouth College Diversa Corp** Mascoma Corp The Samuel Roberts Noble Foundation

With contributions from **Brookhaven National Laboratory Cornell University** North Carolina State University University of California-Riverside University of Minnesota Virginia Tech Washington State University

The CCRC Plant Cell Wall **Biosynthesis** and Structure Group

Growing fuels for our future

Complex Carbohydrate Research Center

Biomass to Bioenergy Goals

- Understand plant cell wall formation at the molecular level
- Alter wall composition to overcome its recalcitrance for conversion to fermentable sugars
- Facilitate development of costeffective production of biofuels

The Research Group

Alan Darvill

(adarvill@ccrc.uga.edu) Lead - Biomass formation and modification

Debra Mohnen

(dmohnen@ccrc.uga.edu) Lead - Polysaccharide biosynthesis and systems biology

Maor Bar-Peled

(peled@ccrc.uga.edu) Nucleotide sugar and polysaccharide modifying enzymes, cell biology of the wall

Michael Hahn

(hahn@ccrc.uga.edu) Cell wall ultra-structure and polysaccharide biosynthesis

Malcolm O'Neill

(mao@ccrc.uga.edu) Hemicellulose structure and biosynthesis

William York

(will@ccrc.uga.edu) NMR spectroscopy and hemicellulose biosynthesis

Research Areas

Systems biology models for cell wall biosynthesis pathways (Mohnen,

Hahn, Bar-Peled) Develop systems biology models to relate gene expression to wall recalcitrance

Cell biology of the wall and wall

assembly (Bar-Peled, Hahn, Mohnen**)** Understand cellular processes leading to wall formation

Glucuronoxylan and arabinoxylan

biosynthesis (York, O'Neill, Bar-Peled, Mohnen)

Identify genes involved in hemicelluose biosynthesis. Use this information to generate plants with altered wall composition and reduced recalcitrance

A tool-kit to study wall biosynthesis

and ultrastructure (Hahn, York, O'Neill) Generate glycosyl acceptors for glycosyltransferases and for O-acyl and O-phenyl transferases. Use monoclonal antibodies to investigate changes in wall ultra-structure during pretreatment and deconstruction.

Identify and purify new cell wall biosynthesis proteins and protein

complexes (Mohnen, Hahn, Bar-Peled) Develop novel affinity matrices to identify protein complexes involved in wall biosynthesis

Cell wall structure and architecture

(York, O'Neill, Hahn) Determine chemical features of biomass that affect recalcitrance

NMR spectroscopy (York)

Develop NMR spectroscopic techniques to identify biomass structures, including lignin carbohydrate complexes, that affect recalcitrance.

Opportunities within BESC

Post-doctoral fellows and students will be encouraged to interact closely with BESC researchers investigating other biomass to bioenergy topics including:

Plant transformation and growth Biomass characterization and modeling Biomass deconstruction/conversion

About the CCRC

The CCRC is organized to optimize interaction and collaboration among plant, microbial and biomedical glycosciences, and synthetic and analytical chemists.

The CCRC has 17 faculty, and ~200 staff, postdoctoral research associates, and graduate and undergraduate students. The CCRC has specialized laboratories for molecular and cellular biology, synthetic chemistry, biological mass spectrometry, and NMR spectroscopy.